As QNAP NAS evolves to support a wider range of applications (including surveillance, virtualization, and AI) you not only need more storage space on your NAS, but also require the NAS to have greater power to optimize targeted workloads. The Mustang-F100 is a PCIe-based accelerator card using the programmable Intel® Arria® 10 FPGA that provides the performance and versatility of FPGA acceleration. It can be installed in a PC or compatible QNAP NAS to boost performance as a perfect choice for AI deep learning inference workloads.OpenVINO™ toolkitOpenVINO™ toolkit is based on convolutional neural networks (CNN), the toolkit extends workloads across Intel® hardware and maximizes performance.It can optimize pre-trained deep learning model such as Caffe, MXNET, Tensorflow into IR binary file then execute the inference engine across Intel®-hardware heterogeneously such as CPU, GPU, Intel® Movidius™ Neural Compute Stick, and FPGA.Get deep learning acceleration on Intel-based Server/PCYou can insert the Mustang-F100 into a PC/workstation running Linux® (Ubuntu®) to acquire computational acceleration for optimal application performance such as deep learning inference, video streaming, and data center. As an ideal acceleration solution for real-time AI inference, the Mustang-F100 can also work with Intel® OpenVINO™ toolkit to optimize inference workloads for image classification and computer vision.QNAP NAS as an Inference ServerOpenVINO™ toolkit extends workloads across Intel® hardware (including accelerators) and maximizes performance. When used with QNAP’s OpenVINO™ Workflow Consolidation Tool, the Intel®-based QNAP NAS presents an ideal Inference Server that assists organizations in quickly building an inference system. Providing a model optimizer and inference engine, the OpenVINO™ toolkit is easy to use and flexible for high-performance, low-latency computer vision that improves deep learning inference. AI developers can deploy trained models on a QNAP NAS for inference, and install the Mustang-F100 to achieve optimal performance for running inference.